Automatic writer identification framework for online handwritten documents using character prototypes

نویسندگان

  • Guo Xian Tan
  • Christian Viard-Gaudin
  • Alex ChiChung Kot
چکیده

This paper proposes an automatic text-independent writer identification framework that integrates an industrial handwriting recognition system, which is used to perform an automatic segmentation of an online handwritten document at the character level. Subsequently, a fuzzy c-means approach is adopted to estimate statistical distributions of character prototypes on an alphabet basis. These distributions model the unique handwriting styles of the writers. The proposed system attained an accuracy of 99.2% when retrieved from a database of 120 writers. The only limitation is that a minimum length of text needs to be present in the document in order for sufficient accuracy to be achieved. We have found that this minimum length of text is about 160 characters or approximately equivalent to 3 lines of text. In addition, the discriminative power of different alphabets on the accuracy is also reported.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online writer identification using character prototypes distributions

Writer identification is a process which aims to identify the writer of a given handwritten document. Its implementation is needed in applications such as forensic document analysis and document retrieval which involved the use of offline handwritten documents. With the recent advances of technology, the invention of digital pen and paper has extended the field of writer identification to cover...

متن کامل

Online Writer Identification Using Fuzzy C-means Clustering of Character Prototypes

New kinds of documents such as handwritten online documents are emerging, which are produced by digital devices such as Tablet PC, personal handheld devices or digital paper coupled with digital pens. The rapid increase in the number of such handwritten online documents leads to mounting pressure on finding innovative solutions towards faster processing, indexing and retrieval of the documents ...

متن کامل

Handwritten Document Analysis for Automatic Writer Recognition

In this paper, we show that both the writer identification and the writer verification tasks can be carried out using local features such as graphemes extracted from the segmentation of cursive handwriting. We thus enlarge the scope of the possible use of these two tasks which have been, up to now, mainly evaluated on script handwritings. A textual based Information Retrieval model is used for ...

متن کامل

Character-level Chinese Writer Identification using Path Signature Feature, DropStroke and Deep CNN

Most existing online writer-identification systems require that the text content is supplied in advance and rely on separately designed features and classifiers. The identifications are based on lines of text, entire paragraphs, or entire documents; however, these materials are not always available. In this paper, we introduce a path-signature feature to an end-to-end text-independent writer-id...

متن کامل

On-line Handwritten Devanagari Character Recognition using Fuzzy Directional Features

This paper describes a new feature set for use in the recognition of on-line handwritten Devanagari script based on Fuzzy Directional Features. Experiments are conducted for the automatic recognition of isolated handwritten character primitives (sub-character units). Initially we describe the proposed feature set, called the Fuzzy Directional Features (FDF) and then show how these features can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pattern Recognition

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2009